翻訳と辞書
Words near each other
・ Dinish Island
・ Dinita
・ Dinitolmide
・ Dinitro-ortho-cresol
・ Dinitroaniline
・ Dinitrobenzene
・ Dinitrobisphenol A
・ Dinitrogen difluoride
・ Dinitrogen oxide
・ Dinitrogen pentoxide
・ Dinitrogen tetroxide
・ Dinitrogen trioxide
・ Dinitromethane
・ Dinitrophenol
・ Dinitrophenyl
Dinitz conjecture
・ Dinivodno Lake
・ Diniyar Bilyaletdinov
・ Diniz
・ Diniz d' Alpoim
・ Dinizia
・ Dinić
・ Dini–Lipschitz criterion
・ Dinjan
・ Dinjan Airfield
・ Dinjapygidae
・ Dinjerd
・ Dinjiška
・ Dink
・ DINK (acronym)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dinitz conjecture : ウィキペディア英語版
Dinitz conjecture
In combinatorics, the Dinitz conjecture is a statement about the extension of arrays to partial Latin squares, proposed in 1979 by Jeff Dinitz, and proved in 1994 by Fred Galvin.
The Dinitz conjecture, now a theorem, is that given an ''n'' × ''n'' square array, a set of ''m'' symbols with ''m'' ≥ ''n'', and for each cell of the array an ''n''-element set drawn from the pool of ''m'' symbols, it is possible to choose a way of labeling each cell with one of those elements in such a way that no row or column repeats a symbol.
The Dinitz conjecture is closely related to graph theory, in which it can be succinctly stated as \chi^\prime_l(K_) = n for natural n. It means that the list chromatic index of the complete bipartite graph K_ equals n. In fact, Fred Galvin proved the Dinitz conjecture as a special case of his theorem stating that the list chromatic index of any bipartite multigraph is equal to its chromatic index. Moreover, it is also a special case of the edge list coloring conjecture saying that the same holds not only for bipartite graphs, but also for any loopless multigraph.
==References==

*
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dinitz conjecture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.